skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Choupani, Edris"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The genetic material within cells plays a pivotal role in shaping the structure and function of living organisms. Manipulating an organism's genome to correct inherited abnormalities or introduce new traits holds great promise. Genetic engineering techniques offers promising pathways for precisely altering cellular genetics. Among these methodologies, clustered regularly interspaced short palindromic repeat (CRISPR), honored with the 2020 Nobel Prize in Chemistry, has garnered significant attention for its precision in editing genomes. However, the CRISPR system faces challenges when applied in vivo, including low delivery efficiency, off‐target effects, and instability. To address these challenges, innovative technologies for targeted and precise delivery of CRISPR have emerged. Engineered carrier platforms represent a substantial advancement, improving stability, precision, and reducing the side effects associated with genome editing. These platforms facilitate efficient local and systemic genome engineering of various tissues and cells, including immune cells. This review explores recent advances, benefits, and challenges of CRISPR‐based genome editing delivery. It examines various carriers including nanocarriers (polymeric, lipid‐derived, metallic, and bionanoparticles), viral particles, virus‐like particles, and exosomes, providing insights into their clinical utility and future prospects. 
    more » « less